光子晶体波导慢光特性研究

曲连杰 杨跃德 黄永箴

(中国科学院半导体研究所集成光电子学国家重点联合实验室,北京 100083)

摘要 基于二维三角晶格空气孔光子晶体,通过在光子晶体单线缺陷波导两侧引入不同的耦合腔,设计了慢光特性较好的波导结构。利用平面波展开法计算波导的色散曲线,并分析慢光模式的群速度和群速度色散特性。耦合 腔采用单缺陷腔时,适当调节波导宽度可以获得在零色散点群速度为 0.0128c 的慢光模式,对应在 1.55 µm 波长 处的带宽为 409 GHz。耦合腔采用长轴与波导方向呈 60°的双缺陷腔,在超原胞大小为 4a×9b(a,b 分别为光子晶体在 x,y方向的周期)时,通过调整波导宽度,可以获得在零色散点群速度为 0.0070c 的慢光模式,对应在 1.55 µm 波长处的带宽为 226 GHz。进一步增大沿波导方向上双缺陷腔之间的距离,可以获得在零色散点群速度为0.0011c 的慢光模式。同时可以根据具体情况选择合适的波导宽度参数,设计满足不同要求的慢光波导结构。

关键词 光通信;光子晶体波导;平面波展开法; 慢光;零色散点

中图分类号 TN929.11 文献标识码 A doi: 10.3788/AOS201131.0113002

Slow-Light Characteristics of Photonic Crystal Waveguides

Qu Lianjie Yang Yuede Huang Yongzhen

(State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China)

Abstract Based on two-dimensional triangular lattice air-hole photonic crystal, a kind of waveguide structure with good slow-light characteristics is proposed by inducing coupled-cavity on both sides of the photonic crystal single-line defected waveguides. The energy-band structure, group velocity and group-velocity dispersion characteristics of slow-light mode are analyzed by plane wave expansion method. For the waveguide structure using single-defect cavity as coupled cavity, the group velocity of 0.0128c at the zero-dispersion point with the bandwidth of 409 GHz in the 1.55μ m wavelength could be obtained by appropriately adjusting the waveguide width. As for the waveguide structure using two-defect cavity as coupled cavity with the super-cell of $4a \times 9b$, the group velocity can reach 0.0070c at the zero-dispersion point with the bandwidth of 226 GHz in the 1.55μ m wavelength by adjusting the waveguide width. To further increase the distance between the two-defect cavities, the slow-light mode with group velocity of 0.0011c at the zero-dispersion point could be obtained. Besides, the slow-light waveguide can meet different requirements by selecting the appropriate width of waveguide.

Key words optical communications; photonic crystal waveguides; plane-wave expansion method; slow light; zerodispersion point

OCIS codes 130.5296; 060.4510

1 引 言

光子晶体有很多独特的性质,可以应用于各种 光学器件^[1,2]。慢光效应就是它的一个很重要的特 性,可以实现大的时间延迟^[3,4]、增加相移^[5]、大色散 或者零色散^[6,7]以及增强非线性效应^[8,9]等作用,在 光学延时线、全光缓存和全光可调谐开关等领域引

收稿日期: 2010-01-01; 收到修改稿日期: 2010-04-20

基金项目:国家 973 计划(2006CB302804)和国家自然科学基金(60777028,60723002,60838003)资助课题。

作者简介:曲连杰(1982—),男,硕士研究生,主要从事光子晶体方面的研究。E-mail: qulianjie@semi.ac.cn

导师简介:黄永箴(1963—),男,博士,研究员,主要从事半导体光电子器件方面的研究。E-mail: yzhuang@semi.ac.cn (通信联系人)

起了科研人员的极大兴趣。除了采用反常色散的材 料来实现材料慢光外,也可以采用微环耦合光学延 时^[10]、方形耦合腔^[11]、半导体波导^[12]和光子晶 体[13~15] 等实现结构慢光。其中光子晶体,理论上在 带边可以实现群速度为0的慢光,Vlasov等^[16]在Si 光子晶体波导中实现了群速度小于 c/300 的慢光, Gersen 等^[17] 在实空间中观察到了群速度小于 c/1000的慢光传播,但是在带边随着群速度的降低, 带宽变得很窄,对应着高色散。为了增加带宽,人们 研究了各种光子晶体零色散结构[7,18~20],但这往往 以牺牲群速度为代价,导致群速度相对较大,慢光效 应不显著。目前对光子晶体零色散慢光的研究,采 用最多的是基于三角晶格平板光子晶体单线缺陷波 导结构,通过引入辅助波导可以在零色散点得到群 速度 c/118 左右的慢光^[19],也可以对波导两侧的空 气孔位置进行调整,获得群折射率为130,对应 1.55 µm波长处带宽 3.9 nm 的慢光模式^[20]。对于 光子晶体平板实现慢光的另两种结构-光子晶体条 形介质波导和光子晶体耦合腔波导,研究比较少,其 中光子晶体条形波导结构的慢光,群折射率可以超 过 100^[21];对于光子晶体耦合腔波导有更优越的慢 光特性,在2.6 nm 波长范围内可以实现群折射率 105±20 的慢光^[22]。在只考虑减少群速度的情况 下,利用三角晶格介质柱光子晶体耦合腔波导可以 实现群速度 5.89×10⁻⁴ c 的慢光^[23]。

本文以二维三角晶格空气孔光子晶体为基础, 通过在光子晶体单线缺陷波导两侧引入缺陷腔作为 耦合腔,利用平面波展开法理论分析了两种缺陷腔 对应光子晶体波导的能带结构,对这两种波导结构 的慢光模式在零色散点处的群速度以及 1.55 µm 波长处的带宽特性进行分析。

2 光子晶体单线缺陷波导

本文提出的光子晶体波导基于光子晶体单线缺 陷波导,通过在波导两侧引入缺陷腔作为耦合腔的 一种波导结构。相对于普通的光子晶体耦合腔波 导,该慢光波导由于基于光子晶体单线缺陷波导,因 此期望具有较高的透射率。

对于耦合腔的种类,在此采用单缺陷腔和双 缺陷腔。单缺陷腔是在完整光子晶体中去除一个 空气孔形成的,而对于双缺陷腔是去除两个空气孔 形成的。双缺陷腔的结构有两种,一种是腔的长 轴沿着波导方向,另一种是长轴与波导的方向呈 60°角,如图1所示。虚线包围的区域分别对应这几 种结构的光子晶体波导的超原胞结构图。介质材 料为Si,相应的折射率为 3.5,对应的空气孔半径 r=0.3a,其中 a 为光子晶体晶格周期。完整的光子 晶体,对于 TE(磁场方向平行于空气孔)模式存在 禁带 0.20506 $(a/\lambda) \sim 0.27206(a/\lambda)$ 。对于单缺陷 腔,其谐振频率位于0.23826 (a/λ) 。公书方向平行于 波导的单个双缺陷腔的谐振频率有 4 个,分别位 于 0.22232 (a/λ) , 0.23805 (a/λ) , 0.23840 (a/λ) 和 0.25660 (a/λ) 。对于长轴与波导呈 60°角的双缺陷 腔的谐振频率位于0.22225 (a/λ) , 0.23805 (a/λ) , 0.2383 (a/λ) 和0.25668 (a/λ) 。可以看出这两种双 缺陷腔的谐振频率相近。

图 1 单、双缺陷腔光子晶体波导超原胞结构图

Fig. 1 Super-cell of photonic crystal waveguides with single-defect cavity and two-defect cavity

对于光子晶体单线缺陷波导,能带的带边位于 归一化频率 0.21176(a/λ)附近,因此无论采用单缺 陷腔或者双缺陷腔作为耦合腔,腔的谐振频率都高 于光子晶体单线缺陷波导的带边频率,意味着腔的 谐振模式与光子晶体单线缺陷波导的模式耦合非常 严重,为了使得光子晶体单线缺陷波导模式带边向 高频移动,考虑通过在 y 方向移动波导两侧相邻空气 孔位置的方法来调节光子晶体单线缺陷波导模式的 位置。如图 1 所示波导宽度为 W_1 ,定义 $m=W_1/b$,其 中b为光子晶体在y 方向上的周期。通过改变波导 宽度的大小,可以实现对波导内模式的位置和属性的 调节。

图 2 为不同 m 值下的光子晶体单线缺陷波导的能带结构图。随着 m 值的减少,禁带内的能带向高频方向移动,当 m = 0.9时,带边位于归一化频率 0.22017(a/λ),当 m = 0.8时,带边位于归一化频率 0.22980(a/λ)。因此,可以得到当 m 位于 0.7 ~ 0.8 之间的某个值时,带边的频率高于单缺陷腔自身的谐振频率。m 位于 0.8 ~ 0.9 之间的某个值时,带边的频率开始高于双缺陷腔自身的谐振频率。同样 m 值范围的确定为后面研究不同结构的光子晶体波导奠定了基础。

Fig. 2 Energy-band structure of photonic crystal singleline defect waveguides under different width of waveguides

3 单缺陷耦合腔光子晶体波导

单缺陷耦合腔光子晶体波导超原胞结构如图 1 所示,大小为 $M_1a \times Nb$,波导宽度m的取值,根据上 面的分析,取为 0.7,0.75,0.8。利用平面波展开法 对不同的超原胞在不同波导宽度下的能带结构进行 计算,通过分析发现当超原胞大小为 $2a \times 9b$ 时,改 变波导宽度m的大小,禁带内的能带结构较复杂, 没有慢光模式较好的单模能带出现,可能是由于沿 着波导方向相邻的两个单缺陷腔之间相互耦合造成 的。为此,取超原胞大小为 $3a \times 9b$,计算不同波导宽 度下单缺陷耦合腔光子晶体波导的能带特性,通过 分析发现对应的禁带内的模式数目明显减少,但模 式的慢光特性仍然不够理想。继续增大沿波导方向 相邻单缺陷腔之间的距离,计算超原胞为 $4a \times 9b$ 的 光子晶体波导的能带结构。

图3为波导宽度m=0.70,0.75,0.8时对应的

单缺陷耦合腔光子晶体波导的能带结构图,超原胞 大小为 $4a \times 9b$ 。随着 m 值的增大,能带向高频方向 移动。当 m = 0.7 和 m = 0.75 时,对应的能带为单 模的,而当 m = 0.8 时,能带之间交叉耦合,没有单 模能带出现。从该模式所处的位置来判断,不是单缺 陷腔的谐振模式,而是通过波导宽度的调节,禁带下 方的能带上移而形成的一个模式。采用群速度和群 速度色散系数以及带宽作为衡量慢光特性的两个主 要参数。对于群速度 $v_g = c/n_g = c \times (dk/d\omega)^{-1}$,通 过计算对应能带的斜率,可以得到该模式的群速度, 群速度色散系数 $\eta_{GVD} = (\partial^2 k/\partial\omega/\partial\lambda)^{[24]}$ 。带宽,定 义为群速度改变 10%所对应的频率范围^[19]。

Fig. 3 Energy-band structure of the super-cell with $4a \times 9b$

图 4 为波导宽度 m = 0.7 和 m = 0.75 时对应 的单缺陷耦合腔光子晶体波导的群速度曲线和色散 曲线,在 m = 0.7 时,能带零色散点位于归一化频率 0.21437(a/λ) 附近,对应的群速度为 0.0137c,在 1.55 μ m 波长处的带宽为 416 GHz,而当 m = 0.75时,能带零色散点位于归一化频率 0.21705(a/λ) 附 近,相应的群速度为 0.0128c, 1.55 μ m 处的带宽为 409 GHz。

图 4 不同波导宽度下的单缺陷耦合腔光子晶体波导。(a)群速度曲线,(b)群速度色散曲线 Fig. 4 Single-defect coupled-cavity photonic crystal waveguides under different width of waveguides. (a) group velocity, (b) group velocity dispersion

4 双缺陷耦合腔光子晶体波导

双缺陷腔作为耦合腔的光子晶体波导,一种结构是双缺陷腔长轴平行于波导方向,通过类似于对单缺陷耦合腔光子晶体波导的分析,禁带内没有慢光特性好的模式出现。为此,分析双缺陷腔长轴与波导方向呈 60°角且对称分布在光子晶体单线缺陷波导两侧的波导结构的慢光特性。超原胞如图 1 中右侧黑色虚线边框包围区域,大小为 $M_{3}a \times Nb$ 。改变波导宽度,根据前面的分析,波导宽度 *m* 应该在 0.8 ~ 0.9 之间。对于超原胞为 3*a* × 9*b* 双缺陷耦合 腔光子晶体波导,改变 *m* 值,没有慢光性质好的单 模能带出现,可能是 *x* 方向相邻的双缺陷腔之间的

耦合太强造成的。为了减少相邻缺陷腔之间的耦合, 增大 x 方向缺陷腔之间距离,采用超原胞为 $4a \times 9b$ 和 $5a \times 9b$ 的光子晶体波导结构,m 值取为 0.8, 0.85,0.9。

图 5(a)是超原胞大小为4 $a \times 9b$ 的双缺陷耦合腔 光子晶体波导的能带结构,在 m = 0.8和 m = 0.85时,各有两个慢光性质较好的单模能带出现,用 H 和 L 区分相同波导参数下归一化频率较高和较低的慢 光模式。对于超原胞为 $5a \times 9b$ 的光子晶体波导结构, 在 m = 0.8和 m = 0.85时,同样各有两个慢光性质较 好的单模能带出现,而对于 m = 0.9只有一个慢光性 质较好的单模能带出现,如图 5(b)所示。

Fig. 5 Energy-band structure of the super-cell with (a) $4a \times 9b$ and (b) $5a \times 9b$

接下来分别对上面提到的几条慢光性质较好的 单模能带进行分析。通过计算它们的群速度及群速 度色散来比较它们在零色散点处的慢光特性。

图 6(a)和(b)是根据图 5(a)计算的超原胞大小 为 4a×9b 的双缺陷耦合腔光子晶体波导的群速度曲 线和群速度色散曲线,当 m=0.80(H)时,在零色散 点[归一化频率为 0. 21695 (a/λ)]的群速度达到 0.0070c, 对应在 1.55 μm 波长处的带宽为 226 GHz, 比较适合应用于实际通讯中。其他几条能带也有着 比较优越的慢光特性,当m=0.80(L)时,在零色散点 $[归-化频率 0.21138(a/\lambda)]$ 群速度为 0.0088c,在 1.55 μm波长处的带宽为 245 GHz。在零色散点处群 速度大于 0.01c 的只有当 m=0.85(H)时,群速度为 0.0146c, 1.55 um 波长处的带宽为392 GHz。图 6(c) 和(d)是根据图 5(b)计算的超原胞大小 5a×9b 的双 缺陷耦合腔光子晶体波导的群速度曲线和群速度色 散曲线。波导宽度 m 分别为 0.80 和 0.85,对于所研 究的4条能带,在零色散点的群速度都小于0.01c。 对于在零色散点位置相对群速度较大的波导结构,波 导宽度 m=0.85(H),在零色散点处 [归一化频率为 0. 21685 (a/λ)]的群速度为 0. 0029c,相应的在 1.55 μ m波长处的带宽为 31 GHz 左右。对于波导宽 度 m=0.90(L),相对于其他宽度的波导,在零色散点 群速度有最小值0.0011c,对应的带宽由于本文计算 的精度限制,粗略估计在 1.55 μ m 波长处为 13.7 GHz。在通讯应用中该带宽不能满足实际要 求,图中没有给出其群速度和群速度色散曲线,如果 仅仅考虑减少群速度,该结果可以接受。因此,在实 际的应用中,从带宽和群速度两个方面综合考虑,超 原胞为 $4a \times 9b$ 的波导结构更有优势。

5 结 论

在二维三角晶格空气孔光子晶体单线缺陷波导 基础上,通过在波导两侧引入耦合腔,得到慢光特性 较好的波导结构。对于耦合腔采用单缺陷腔的波导 结构,适当调节波导宽度可以获得在零色散点处群速 度为 0.0128c 的慢光模式,对应在 1.55 μm 波长处的 带宽为 409 GHz。而对于耦合腔采用长轴与波导传 播方向呈 60°角的双缺陷腔,在超原胞为 4a×9b 时, 通过调整波导宽度,可以获得在零色散点处群速度为 0.0070c 的慢光模式,对应在1.55 μm波长处的带宽为 226 GHz。进一步增大沿波导方向缺陷腔之间的距

图 6 超原胞为 $4a \times 9b$ 的波导结构的(a)群速度曲线,(b)群速度色散曲线;超原胞为 $5a \times 9b$ 的波导结构(c)群速度曲线, (d)群速度色散曲线

Fig. 6 (a) Group velocity and (b) group velocity dispersion of waveguids with 4a×9b super-cell, (c) group velocity and
(d) group velocity dispersion of waveguids with 5a×9b super-cell

离,可以获得在零色散点处群速度为 0.0011c 的慢光 模式。可以根据具体情况选择合适的参数,应用于光 学延时线和光存储等慢光器件中。

参考文献

1 Wang Y. F., Qiu Y. S., Chen X. Y. *et al.*. Two-dimensional photonic crystal sensor based on Michelson interferometer[J]. *Acta Optica Sinica*, 2009, **29**(4): 1083~1087 王字飞, 邱怡申, 陈曦曜 等. 基于迈克耳孙干涉仪的二维光子晶

体传感器[J]. 光学学报, 2009, 29(4): 1083~1087

2 Chen S. W., Zhu G. X., Yu T. B. *et al.*, 1×3 beam splitter based on photonic crystal waveguides directional coupler[J]. *Acta Optica Sinica*, 2009, **29**(10): 2898~2904

陈淑文,朱桂新,于天宝 等.光子晶体波导定向耦合型 1×3 光分 束器[J].光学学报,2009,**29**(10):2898~2904

- 3 Khurgin J. B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis[J]. J. Opt. Soc. Am. B, 2005, 22(5): 1062~1074
- 4 Baba T., Kawaaski T., Sasaki H. *et al.*. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide[J]. *Opt. Express*, 2008, **16**(12): 9245~9253
- 5 Brosi J. M., Koos C., Andreani L. C. *et al.*. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide [J]. *Opt. Express*, 2008, **16** (6): 4177~4191
- 6 Kubo S., Mori D., Baba T.. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides [J]. Opt. Lett., 2007, 32(20): 2981~2983
- 7 Li J., White T. P., Faolain L. O. *et al.*. Systematic design of flat band slow light in photonic crystal waveguides [J]. *Opt. Express*, 2008, 16(6): 6227~6232
- 8 Monat C., Corcoran B., Ebnali-Heidari M. et al.. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal

waveguides[J]. Opt. Express, 2009, 17(4): 2944~2953

- 9 Soljačić M., Joannopoulos J. D.. Enhancement of nonlinear effects using photonic crystals[J]. Nature Materials, 2004, 3: 211~219
- 10 Pornsuwancharoen N., Yupapin P. P.. Generalized fast, slow, stop, and store light optically within a nanoring resonator [J]. *Microw. Opt. Technol. Lett.*, 2009, **51**(4): 899~902
- 11 Mookherjea S., Park J. S., Yang S. H. et al.. Localization in silicon nanophotonic slow-light waveguides [J]. Nature Photonics, 2008, 2: 90~93
- 12 M
 h
 rk J., Öhman F., Poel M. V. D. et al.. Slow and fast light: controlling the speed of light using semiconductor waveguides [J]. Laser & Photon. Rev., 2009, 3(1~2): 30~44
- 13 Baba T. . Slow light in photonic crystals[J]. Nature Photonics, 2008,
 2: 465~473
- 14 Wang X. Y., Tian H. P., Li C. H. *et al.*. Tunable slow light by electro-eptic effect in polymer photonic crystal waveguide[J]. *Acta Optica Sinica*, 2009, **29**(5): 1374~1378
 王雪莹,田慧平,李长红等.聚合物光子晶体波导中慢光传输的 电光动态调制[J]. 光学学报, 2009, **29**(5): 1374~1378
- 15 Zhang M., Pan W., Yan L. S. *et al.*. Research of slow light in the two-dimensional triangular rods photonic crystal line defected waveguide[J]. *Chinese J. Lasers*, 2009, **36**(4): 857~861
 张 曼,潘 炜,闫连山 等. 二维三角晶格介质桂光子晶体线缺陷波导慢光研究[J]. 中国激光, 2009, **36**(4): 857~861
- 16 Vlasov Y. A., O'Boyle M., Hamann H. F. *et al.*. Active control of slow light on a chip with photonic crystal waveguides [J]. *Nature*, 2005, **438**: 65~69
- 17 Gersen H., Karle T. J., Engelen R. J. P. *et al.*. Real-space observation of ultraslow light in photonic crystal waveguides [J]. *Phys. Rev. Lett.*, 2005, **94**(7): 073903
- 18 Petrov A. Y., Eich M., Zero dispersion at small group velocities in photonic crystal waveguides[J]. Appl. Phys. Lett., 2004, 85(21): 4866~4868
- 19 Mao X. Y., Zhang G. Y., Huang Y. D. et al.. Zero-dispersion slow light with wide bandwidth in photonic crystal coupled waveguides [J]. Chin. Phys. Lett., 2008, 25(12): 4311~4313

- 20 Leng F. C., Liang W. Y., Liu B. *et al.*. Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides[J]. *Opt. Express*, 2010, **18**(6): 5707~5712
- 21 Falco A. D., O'Faolain L., Krauss T. F. Dispersion control and slow light in slotted photonic crystal waveguides [J]. Appl. Phys. Lett., 2008, 92(8): 083501
- 22 Jágerská J., Thomas N. L., Zabelin V. *et al.*. Experimental observation of slow mode dispersion in photonic crystal coupled-cavity

waveguides[J]. Opt. Lett., 2009, 34(3): 359~361

- 23 Lu H., Tian H. P., Li C. H. *et al.*. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide [J]. *Acta Physica Sinica*, 2009, **58**(3): 2049~2055
 詹 辉,田慧平,李长红等. 基于二维光子晶体耦合腔波导的新型慢光结构研究[J]. 物理学报, 2009, **58**(3): 2049~2055
- 24 Krauss T. F.. Slow light in photonic crystal waveguides [J]. J. Phys. D: Appl. Phys., 2007, 40: 2666~2670